Installed software
- System
- Operating system : RHEL 9.1
- Job scheduler : Slurm 22.05.9
- Parallel file system : BeeGFS 7.4.1
The following compilers, applications, tools and libraries are available as environment modules.
info
If the software you need is not available or if you have specific needs, let us know at hpc@univ-lille.fr. We will help you find an appropriate solution.
Compilers
GNU
- gcc/11.3.1
- gcc/11.3.1/openmpi/4.1.5
- gcc/11.3.1/openmpi/5.0.1
Intel
- intel/2024/compilers
- intel/2024/openmpi/5.0.1
Nvidia
- nvidia/cuda/12.0/compilers
- nvidia/cudnn/8.9.6
- nvidia/nvhpc
- Loading this module will make several
nvhpc(sub)modules available
- Loading this module will make several
PGI
- pgi/19.10/compilers
- pgi/19.10/compilers-nollvm
- pgi/19.10/openmpi/3.1.3
Libraries
- boost/1.82/gcc/11.3.1
- fftw/3.3.10
- fftw/3.3.10.mpi
- hdf5/1.14.3/intel/2024/mpi
- hdf5/1.14.3/intel/2024/seq
- hdf5/1.14.3/nvhpc/24.1.mpi
- netcdf/4.9.2/mpi
- netcdf/4.9.2/seq
- petsc/3.20
Logiciels scientifiques
- amber
- cp2k
- crest
- diann
- dlpoly
- freefem++
- gromacs
- lammps
- matlab
- molden
- molpro
- n2p2
- namd
- openfoam
- phonopy
- plumed
- polyrate
- pynx
- pytorch
- quantum espresso
- R
- uspex
- vaspkit
- wannier90
- xtb
caution
The following codes are only available to users with a valid license.
- abaqus
- ansys
- gaussian
- schrodinger
- vasp
Python environments
- conda/23.11-py311
We recommend to use conda virtual environments for your python projects.
Once the conda module is loaded, the following conda environments are available :
- base
- python311-tensorflow
- Tensorflow 2.15
- python311-tools
- Environment with frequently used tools : scipy numpy numba pandas dask matplotlib pytorch keras scikit-learn seaborn beautifulsoup4 zeromq
- scikit-learn
- scikit-learn 1.4.1
- pytorch-gpu
- pytorch 2.2.1 with GPU support
- tf-gpu
- Tensorflow 2.15 with GPU support
Example:
# load conda module
ml conda/23.11-py311
# list available environments
conda info --envs
# activate python311-tensorflow
conda activate python311-tensorflow
# check python version
python --version
# check that tensorflow works
python3 -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"
# deactivate environment
conda deactivate